Gaussian Regression and Optimal Finite Dimensional Linear Models

نویسندگان

  • Huaiyu Zhu
  • Christopher K. I. Williams
  • Richard Rohwer
  • Michal Morciniec
چکیده

The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Sample Properties of Quantile Interrupted Time Series Analysis: A Simulation Study

Interrupted Time Series (ITS) analysis represents a powerful quasi-experime-ntal design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (...

متن کامل

Hypothesis Testing for High-dimensional Sparse Binary Regression.

In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which do...

متن کامل

Finite- dimensional optimal controllers for nonlinear plants

Optimal risk sensitive feedback controllers are now available for very general stochastic nonlinear plants and performance indices. They consist of nonlinear static feedback of so called information states from an information state filter. In general, these filters are linear, but infinite dimensional, and the information state feedback gains are derived from (doubly ) infinite dimensional dyna...

متن کامل

Finite-Dimensional Approximation of Gaussian Processes

Gaussian process (GP) prediction suffers from O(n3) scaling with the data set size n. By using a finite-dimensional basis to approximate the GP predictor, the computational complexity can be reduced. We derive optimal finite-dimensional predictors under a number of assumptions, and show the superiority of these predictors over the Projected Bayes Regression method (which is asymptotically optim...

متن کامل

Conditional Dependence in Longitudinal Data Analysis

Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997